previous icon Back to blog
Jul 07, 2023
10 minutes read

Unlocking the Potential of ChatGPT and Large Language Models: A Product Manager's Perspective

With the advent of ChatGPT, it feels like we’re venturing into a whole new world. Everyone can ask questions and give commands to what is perceived as an “omniscient” chatbot. Within a single week, it acquired 1 million active users. Big Tech got shaken up with Google introducing their LaMDA-based “Bard” and Bing Search incorporating GPT-4 with Bing Chat. There seems to be no limit to the enthusiasm. But what is ChatGPT? What does it mean for businesses? We discussed this with Arman van Lieshout, Product Manager at CM.com for our Conversational AI Solution.

Brechtje van Houtum
Brechtje van Houtum,
Content Marketer

What is ChatGPT exactly?

ChatGPT is a chat interface based on the GPT-series Large Language Models (LLMs) by OpenAI. You can ask it whatever you want and give it commands to generate structured information. Think of use cases like asking a question, having a piece of text translated, making calculations based on a problem description, having code generated for a feature you’re thinking of, and the list goes on…

Arman van Lieshout about ChatGPT CM.com

But how is it doing all of this? Arman, how does ChatGPT work?

So, ChatGPT is a product made by OpenAI based on its GPT3.5 series. It’s a Large Language Model (LLM) with 20 billion parameters, specifically trained (read: by hand) to model conversations. The model consists of Natural Language Understanding (NLU) to understand input and Natural Language Generation (NLG) to formulate a response. Especially that last bit, NLG, has made significant steps forward with the introduction of ChatGPT, better enabling “generative” AI use cases.

Hold up, LLMs, generative AI, parameters, what’s that all about?

Simply put, it's an algorithm that recognises, summarises, translates, predicts, and generates text. It can do this due to the huge data sets used to train the model. One of the ways to express its capacity to learn is by quantifying the number of parameters. A parameter is a variable that makes up that part of the model that was able to learn from historical data provided in the underlying data set. So, the number of parameters says something about how many nuances a model can absorb. So far, we’ve seen a strong correlation between the number of parameters a model has and its ability to resemble and generate human-like responses and behaviour

All right, so it's a chatbot that understands nuance and can generate its own responses. What do you see as the major advantages and disadvantages of this development?

Aside from the opportunities and powerful new use cases this technology brings, I see the hype surrounding it as the biggest advantage. The extraordinary enthusiasm brings an increase in curiosity and demand for technology in Generative AI. It puts the power of conversational AI on public display, and people love it. Ultimately, this will further drive innovation as more people and companies get involved.

There are some early downsides too. We’ve noticed that during the early stages of these types of developments, many people find it hard to poke through the noise and see the real business value. ChatGPT is perceived as an omniscient and omnipotent technology, which isn’t exactly true. It’s a conversational AI model that’s great at Natural Language Generation, but it’s not perfect. It makes mistakes. It is fine if its users understand that it occasionally gets things wrong and is not some panacea. This phase will pass, and what we will be left with will be extremely impressive.

ChatGPT vs Conversational AI

Human-like conversations sound like something that people are also trying to achieve with Conversational AI Cloud.

What is the difference between ChatGPT and Conversational AI Cloud?

Good question. OpenAI’s GPT series is a great application of the “new” transformer architecture that Google introduced to the world in 2017. Our Conversational AI Cloud has been using transformer models for years. The big difference is what a Conversational AI Platform has built around those models to truly deliver business value for an organisation.

Conversational AI Cloud helps companies to address specific business problems by automating conversations. Natural Language Processing (NLP) is at the heart of that. When you need to automate many, and/or complex questions, there are limits to what you can do with rule-based models so employing AI models only makes sense.

In isolation, those models don’t do a lot. Businesses want to deploy AI on webchat, WhatsApp, and other channels. They want to test their models before deploying new versions. And they want to easily add or update content when they need to update their prices or add a new conversational flow, for example. They want to gain insights on their KPIs like model performance or deflection rate. And what about integrations with existing systems such as an OMS, CDP, CRM, or ERP? If you can’t execute real actions with your Conversational AI, such as fetching or updating records to give status updates to customers or change their information, then you can’t do much. ChatGPT cannot do any of this. But with Conversational AI Cloud you can. So, the models that we use “under the hood” complement a broad set of capabilities that form our full solution.

Answers given by Conversational AI Cloud can adapt to context but are vetted by copywriters in your firm to ensure responses are always factually correct, on brand, and carry the right tone of voice. So, depending on how well your environment is set up, the worst that can happen is that your AI, in some minor percentage of cases, will answer with “I don’t know the answer to that question”. Yet even that sentence will be phrased exactly how you want it to be phrased, and that flow is fully controlled. All these principles result in a low-risk profile for using Conversational AI Cloud to interact with your customers.

And this is also immediately the big difference between ChatGPT and Conversational AI Cloud. ChatGPT’s behaviour is what you would call a black box. Ask the same exact question 5 times, and you will get five different answers (or not, you’ll never be sure). Sometimes, one of those answers will sound great but also factually incorrect. Your AI making up answers on the spot saves you an FTE, maybe two, in administrative work. But simultaneously, it decreases your capability to exercise control, be transparent and maintain quality. So, this risk profile of having generative AI output go directly to your customers is significantly higher (at least now that we’re still in the early days of this technology). We’ll get past that point sometime, but not today.

CM.com LLM NLP ChatGPT blog visual

OK, so the audience and the use cases are very different?

That’s a good way to summarise it. Our models will keep on evolving as they have done in the past. And I’m sure that the LLMs currently being developed and released will greatly enhance the capabilities of our products. It won’t cannibalise it; these are two different, complementary things.

CM.com & ChatGPT

So, Arman, when you say these models will enhance our products what does that mean? And does CM.com have any plans around adopting these new models?

What role can ChatGPT play in our products?

We see a lot of opportunities to enhance our products and further enable the users of our products and the work they’ve been doing for the past years. Whether it’s for a conversation designer in Conversational AI Cloud, an agent in Mobile Service Cloud, or a marketeer in our Mobile Marketing Cloud. They are all generating content. Using generative AI to make content suggestions and having our customers run a final check will take a lot of work off their hands.

The important thing for us is that we don’t get carried away with the hype and integrate these technologies for the sake of incorporating them. We only want to implement features where significant value is added for our products and customers. We’re not about marketing-driven labelling of our capabilities with “AI-powered this, AI-powered that”. Generative AI and LLMs are mighty and make a lot of sense in many places, but we are conscious of the downsides and ensure that any new features we offer deliver quality and value.

openai-caic-logos

So, tell us, what are we building right now, and what can we expect for the future?

I’m glad you asked. We have some stuff in the pipeline that really gets our hearts racing. Let's look at some of them.

  • Generating Conversational Content

    Our goal is to achieve a faster go-live for our Conversational AI clients, whether it’s a new customer just getting started or an existing customer wanting to add a new conversational flow. Though we pride ourselves on ease of use, setting up intent models and article structures takes time. Time that can be significantly reduced if you, as a conversation designer, have what you could call a ghostwriter doing the heavy lifting for you. In the short term, that means prompting Conversational AI Cloud with information about your business. Say you’re a utility company. You can share that fact and provide some minor details about your products and services – after which the LLM will automatically generate questions and points of recognition that you may very well expect to receive from your customers. You can consider your output after the prompt as a draft, review it, test it, and publish it. Thinking about that content yourself takes up a lot of time you could have spent elsewhere.

    We’re starting with intents, and we’ve already identified multiple other areas which will benefit from this type of solution. Over time we’ll add more and more of these capabilities to the CM.com portfolio.

  • LLMs for real-time natural language processing

    One thing we’re always working on is our NLP models in our Conversational AI Cloud, and making agents’ lives easier in our Mobile Service Cloud. The goal here is to improve our existing NLP infrastructure with the power of LLMs by investigating topics like zero- and few-shot recognition. And again, here, we also focus on the value this will bring to our products. Stronger recognition models mean fewer escalations towards live agents, and more fine-grained routing when escalations do occur results in a lower average handling time per conversation. All of this will add significant value to the entire CM.com platform. Aside from that, we’re also looking at topics like spelling and grammar corrections to help conversation designers, contact center agents, and marketeers.

  • Personalisation through sentiment

    ChatGPT makes a good case for how sentimental context can improve replies. When negative sentiment is spotted, we can counterbalance by rephrasing static answers to be more empathetic or apologetic for the situation at hand. This concept can also work well for suggestions to contact center agents. Overall, this will create a better end-user experience resulting in a stronger bond between our customers and their end-users.

  • Summarisations and search capabilities

    Recognition models don’t always perform well on long-form content. Summarising long-form input before running it through our recognition models is a good way to increase the overall recognition rate and answer all incoming questions with higher confidence and precision.

    When we organise handoffs to human agents, those agents will also be able to reduce their average handling time if they can read a summary of the conversation between the bot and the customer. The agents can get up to speed faster and provide a better and more timely first response. Any minor improvement in first response time is also correlated to a higher satisfaction rate, whether that’s expressed in NPS, CSAT, or CES.

CM.com ChatGPT OpenAI summary

The future starts today

To conclude, I’m curious what developments like ChatGPT, LLMs, and generative AI will bring to the table in the short term and what our more long-term expectations are after we’ve released these human-in-the-loop features you touched upon earlier.

What does ChatGPT mean for business today and in the future?

As a stand-alone product, ChatGPT is something of a personal assistant that can boost every employee’s individual productivity as supplementation on tools like search engines and wikis in the very short term (read: today)

As the access to the LLMs behind products like ChatGPT and Bard will find its way into the hands of developers, we’ll start seeing more specific implementations that solve problems on a business scale, rather than just individual productivity increases for knowledge workers. The human-in-the-loop use cases in products like our own are a perfect example.

In the long term, we’ll eventually get past the black-box uncertainties as professionals familiarize themselves with using these models to speak directly with consumers. Just like it did back in the day with NLP: it will take some time. People need to learn the right skill sets and metrics to work with these models at that level. For NLP, F1 scores, precision, recall, and comparable metrics for evaluation and training have become common knowledge. Today, you can find plenty of papers detailing similar metrics for NLG. The cascade from early adopters being comfortable with that to the early majority buyers will take some time. How much time exactly? I don’t think anyone has the answer to that.

In the meantime, we’re pretty hyped to release our first LLM features in March and continue pushing for even more advanced cases as the year progresses.

To be continued!

Want to know more about how we can help you with Conversational AI? Reach out for a human conversation.

Was this article interesting?
Share it!
Brechtje van Houtum
Brechtje van Houtum,
Content Marketer
logo linkedin icon

Whether it’s developing content strategies or creating social media content, Brechtje is eager to contribute. She spreads CM.com’s message far and wide, stays on top of cutting-edge tech developments, and champions a 'customer first' philosophy.

Latest articles

halo
Oct 08, 2025 • AI

Why templated AI agents are a game-changer

In today’s fast-paced world, customers expect instant, seamless service. Whether it’s tracking an order, scheduling an appointment, or managing a return, businesses are under pressure to deliver quick and accurate responses, without driving up costs or overloading their teams. Templated AI agents, powered by agentic AI, are stepping in to meet this challenge.

blog-chatbot-vs-virtual-agent-2
Oct 08, 2025 • AI

From chatbots to virtual agents: The natural evolution of customer interaction

Chatbots have been a valuable tool in the automation journey, helping businesses handle simple tasks and provide instant responses to customers. However, as customer expectations evolve and business operations grow more complex, chatbots are no longer enough. The future lies in virtual agents: intelligent, autonomous systems that go beyond the limitations of chatbots to deliver seamless, personalised, and efficient interactions. This isn’t about choosing between two tools; it’s about embracing the natural evolution of automation. In this blog, we’ll explore how virtual agents differ from chatbots, why they represent the next step forward, and what they can deliver for your business.

blog-halo-ecommerce
Oct 08, 2025 • AI

AI agents: The accelerators of conversational commerce

The way consumers search for and process information online is rapidly changing thanks to AI. Where we used to type in search terms, scroll through dozens of results, and manually filter them, we are now getting used to having conversations. With ChatGPT, Google’s AI features, and other assistants, answers come faster and are more relevant. That same way of interacting is now taking over e-commerce at high speed. For retailers, this is the moment to step in: the web shop as we know it—where customers have to actively search themselves—is giving way to personal conversations that directly lead to action.

blog-picking-ai-platform
Oct 08, 2025 • HALO

From selection to success: How to choose the right AI platform

An AI platform isn’t just another tool you purchase. It’s the foundation on which your organisation operates and innovates. The choices you make today will shape how you work in the future. While you may start with just a few agents supporting specific use cases, over time more processes will be taken over by agents. That’s why it’s critical to ensure the foundation you lay now is cohesive, scalable, and backed by solid governance and compliance.

blog-ai-agents-live
Oct 08, 2025 • AI

How AI agents are about to transform the music and events industry

The live events industry - from sports matches to festivals and concerts - is under pressure. Fans demand more, technology evolves constantly, and internal teams are stretched thin. In this shifting landscape, AI agents aren't here to replace people, but to amplify them - bringing structure, speed, and clarity where it's needed most.

Implementation checklist for AI agents
Oct 08, 2025 • AI

Your AI agent implementation checklist

AI agents aren’t just shaping the future they’re transforming how companies serve and connect with their customers right now. From answering service requests instantly, to guiding shoppers through a purchase, to spotting upsell opportunities in real time, the question is no longer if you should implement AI, but how quickly you can put it to work.

blog-ai-agent-creation
Aug 18, 2025 • AI

The agentic AI playbook: Unlock ideas for your new digital colleagues

In a world where AI agents are becoming the norm, the real challenge isn’t understanding what they can do but imagining how they can work for you. AI Agents are more than just automation tools; they’re customisable digital colleagues, ready to take on roles tailored to your unique business needs. The possibilities are endless, but it’s not always easy to know where to start. It's time to spark your creativity. From streamlining niche processes to handling tasks you didn’t even realise could be automated, AI Agents can integrate seamlessly into your team. Here are some fresh ideas to inspire your next digital colleague.

blog-ai-for-the-future
Aug 18, 2025 • AI

How to choose the right AI platform for your business: A strategic guide

Are your customer communication tools keeping up with today’s fast-changing expectations? In a world where seamless, personalised interactions are the norm, choosing the right AI platform has never been more critical. What was once an operational concern for service or marketing departments has now become a core strategic issue for leadership teams. In customer experience focused industries like e-commerce and travel the question is no longer just about improving efficiency, it’s about staying competitive in a market where customer expectations evolve daily.

whatsapp-business-blog_image-abandoned-carts-stock-wishlist
Jun 30, 2025 • WhatsApp

How WhatsApp Business Can Help With Abandoned Carts Recovery

Picture the scene as a customer: we've made the decision that we're going to buy something and we've added it to the cart, but for whatever reason, we don't follow through with the transaction. Sometimes we forget that we've added items to the cart; other times the phone rings just as we're about to click pay and we forget about it. On other occasions, we see something at the last minute that we don't like the look of that makes us think twice about buying.

Is this region a better fit for you?
Go
close icon